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General expressions for calculating the internal conversion decay rate constants between two adiabatic electronic
states and between two diabatic electronic states are derived. The expressions include the displacements,
distortions, and rotations of potential energy surfaces as well as the temperature. For illustration, internal
conversion rate constants between various singlet electronic states of ethylene and between the first excited
S1 and the ground S0 singlet electronic states of azulene are calculated.

1. Introduction

Perhaps the most convincing experimental evidence for
radiationless transitions was provided by Kasha in 1950, which
has been known as Kasha’s rule ever since.1 With rare
exceptions, polyatomic molecular luminescence was observed
only from the lowest excited electronic state of a given
multiplicity, no matter which stable electronic state was excited.
Fluorescence always occurred from the lowest excited singlet
state and phosphorescence occurred from the lowest triplet state.
Kasha discriminated between two types of radiationless transi-
tions, the one occurring between states of the same multiplicity,
which he called internal conversion, and the one occurring
between states of different multiplicity, called intersystem
crossing. Such processes are necessarily energy-conserving in
an isolated molecule, so the electronic energy difference is
converted into excess vibrational energy.

A theory that had success in at least qualitatively describing
these transitions in large molecules was outlined by Robinson
and Frosch2,3 and was formulated in a somewhat different way
by Hunt et al.4 The formal theory of the intramolecular
nonradiative transitions in isolated (collision-free) polyatomic
molecules of sufficient size was put forward by Lin5,6 and by
Bixon and Jortner,7 who attempted to reformulate the entire
problem of radiationless transitions by being more explicit about
the coupling mechanism that was responsible for the radiation-
less process and to establish the criteria that make an irreversible
radiationless relaxation process possible. They have attributed
the nonstationary character of the excited electronic states to a
coupling between vibrational and electronic motion brought
about by a breakdown of the Born-Oppenheimer approximation
(in case of internal conversion) plus the spin-orbit coupling
(in case of intersystem crossing). For a list of other contributors
to the subject, the reader is referred to the book by Medvedev
and Osherov.8

The aim of the present paper is to derive new general
expressions for the internal conversion decay rate constants,
which includes the effects of Franck-Condon (the displace-
ment-distortion-rotation of harmonic potential energy sur-
faces), the promoting modes, and the temperature. Even though

the displacements of potential energy surfaces (PESs) play a
predominant role in radiationless processes, it is believed that
the distortions and the rotations of these surfaces may also play
a significant role.8-11 In our derivation we have taken all three
effects as well as the whole set of vibrational normal modes
into account. For illustration, we calculated the internal conver-
sion decay rate constants between various singlet electronic
states of ethylene and between the S1 and S0 electronic states
of azulene.

2. General Considerations

2.1. Static and Dynamic Aspects of Perturbations.Consider
a physical system with a time-independent Hamiltonian (Ĥ0)
in which the Schrodinger equationĤ0|æj〉 ) Ej

0|æj〉 can be
solved exactly for the eigenstates and eigenvalues of the bound
stationary states. Assume that we want to take into account an
external perturbation or interactions internal to the system,
initially neglected inĤ0. The Hamiltonian now becomesĤ )
Ĥ0 + V̂, whose eigenstates and eigenvalues will be denoted by
|ψj〉 andEj, respectively. We shall assume here that the coupling
(or perturbation)V̂ is time-independent. Two aspects ofV̂ are
as follows:12 (1) {Ej

0} are not the possible energies (the static
aspect) and (2){|æj〉} are not the stationary states (the dynamic
effect) of the system any more. So we are faced with two
problems, first is the calculation of{Ej} in terms of{Ej

0} and
the matrix elements ofVij of V̂, and second is the calculation of
the transition rate among various unperturbed states{|æj〉} in
terms of the same quantities. We shall now investigate these
two aspects quantitatively.

Let eq 1 be the state vector of the system at the instantt.

The evolution of|ψ(t)〉 in the presence of the coupling (V̂) is
given by the Schrodinger equationip(d/dt)|ψ(t)〉 ) (Ĥ0 +
V̂)|ψ(t)〉. Projecting this equation onto the basis vectors{|æj〉},
we obtain eq 2 (without loss of generality we may setV11 )
V22 ) ... ) Vnn ) 0):
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|ψ(t)〉 ) ∑
j)1

n

aj(t)|æj〉 (1)

ip
d
dt

ak(t) ) ∑
j)1

n

(δkjEj
0 + Vkj)aj(t) k ) 1, 2, ...,n (2)

9454 J. Phys. Chem. A2007,111,9454-9462

10.1021/jp073280e CCC: $37.00 © 2007 American Chemical Society
Published on Web 08/03/2007



Let us consider a solution in the form of eq 3;

whereR1, ...,Rn are constants to be determined. Substitution of
eq 3 into the system in eq 2 results in the algebraic equations
of eq 4.

These equations have nontrivial (nonzero) solutions if and only
if the determinant of the coefficients vanishes (eq 5).

This characteristic equation is a polynomial of degreen in the
unknownE. Its rootsE1, E2, ...,En give the desired eigenvalues
of Ĥ. By substituting each eigenvalueEj into the set of algebraic
equations of eq 4 and invoking the requirement of normalization,
we then obtain the elementsR1j, R2j, ...,Rnj of thejth eigenvector.
This procedure yields a fundamental set of solutions (eq 6).

Thus the general solution to the system in eq 2 on the interval
-∞ < t < +∞ is eq 7.

To find the constantsc1, c2, ..., cn we need some initial
conditions. If the initial conditions are given, then these constants
can be determined by solving the algebraicn × n system,
resulting from substituting the conditions into general solution
eq 7. Suppose the system is prepared in the state|æs〉 at timet
) 0, we can then write eq 7 as eq 8;

which simply implies thatcj ) Rsj
/ , j ) 1, 2, ...,n. Combining

this with eq 7 and substituting the results into eq 1 we obtain
the state vector of the system as eq 9;

with eq 10.

Because the matrixRij is unitary, the inverse of eq 10 is eq 11.

Likewise, the probability amplitude that the system is still in
the state|æs〉 is given by eq 12;

the probability amplitude of finding the system at timet in the
state|æl〉, assuming it was prepared in the state|æs〉 at t ) 0, is
given by eq 13.

As an example we consider a physical system that has two
states whose energies are close together and very different from
those of all other states of the system. If the perturbation is
sufficiently weak we can calculate its effects on the two states
by ignoring all the other energy levels of the system. In other
words, we can confine ourselves to a two-dimensional (2D)
subspace of the state space. In this case the roots of the
characteristic eq 5 are given by both parts of eq 14.

SubstitutingE1 andE2 into the system given by eq 4 and making
use of the normalization condition, we obtain eqs 15 and 16,
respectively;12

where tanθ ) 2|V12|/(E1
0 - E2

0), V12 ) |V12| e-iφ with 0 e θ <
π and 0e φ < 2π. With the initial conditionsa1(0) ) 1, a2(0)
) 0, eqs 12 and 13 become eqs 17 and 18.

The probability of finding the system at timet in the state
|æ2〉, assuming it was prepared in the state|æ1〉 at time t ) 0,
is given by eq 19.

This expression is sometimes called Rabi’s formula.12 We
observe that this probability oscillates over time with a frequency
of (E1

0 - E2
0)/h. Accordingly, the probability of finding the

system in the state|æ1〉, which is 1 at timet ) 0, again becomes
1 at timest ) 2nπp/(E1 - E2) with n ) 0, 1, 2, .... WhenE1

0 )
E2

0, the coupling causes the system to oscillate completely
from one state to the other with a frequency proportional to the
coupling matrix element. This means that in a two-state system
the transitions between two unperturbed states are reversible.

As a second example, we now consider a multistate system
in which a single state|æs〉 couples to a large number of states
{|æl〉}, assuming that there is no coupling in the{|æl〉} manifold.

ak(t) ) Rke
-iEt/p k ) 1, 2, ...,n (3)

∑
j)1

n

[δkj(Ej
0 - E) + Vkj]Rj ) 0 k ) 1, 2, ...,n (4)

det [δkj(Ej
0 - E) + Vkj] ) 0 k, j ) 1, ...,n (5)

(R1je
-iEjt/p

R2je
-iEjt/p

l
Rnje

-iEjt/p
) j ) 1, 2, ...,n (6)

ak(t) ) ∑
j)1

n

cjRkje
-iEjt/p k ) 1, 2, ...,n (7)

ak(0) ) ∑
j)1

n

cjRkj ) δks k ) 1, ...,n (8)

|ψ(t)〉 ) ∑
j)1

n

Rsj
/e-iEjt/p|ψj〉 (9)

|ψj〉 ) ∑
i)1

n

Rij|æi〉 (10)

|æj〉 ) ∑
i)1

n

Rji
/ |ψi〉 (11)

as(t) ) ∑
j)1

n

|Rsj|2e-iEjt/p (12)

al(t) ) ∑
j)1

n

Rsj
/Rlje

-iEjt/p (13)

E1 ) 1
2
(E1

0 + E2
0) + 1

2x(E1
0 - E2

0)2 + 4|V12|2 (14a)

E2 ) 1
2
(E1

0 + E2
0) - 1

2x(E1
0 - E2

0)2 + 4|V12|2 (14b)

R11 ) cos
θ
2

e-iφ/2 R21 ) sin
θ
2

eiφ/2 (15)

R12 ) -sin
θ
2

e-iφ/2 R22 ) cos
θ
2

eiφ/2 (16)

a1(t) ) cos2
θ
2

e-iE1t/p + sin2 θ
2

e-iE2t/p (17)

a2(t) ) sin
θ
2

cos
θ
2

eiφ(e-iE1t/p - e-iE2t/p) (18)

|a2(t)|2 )

4|V12|2

(E1
0 - E2

0)2 + 4|V12|2
sin2[x(E1

0 - E2
0)2 + 4|V12|2 t

2p] (19)
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This model, which reasonably describes the irreversibility of
radiationless transitions, was proposed by Wigner and Weiss-
kopf.21 For this model we can find approximate expressions for
the expansion coefficients without carrying out Hamiltonian
matrix diagonalization. We are interested in calculating the
probability of the system to be found in the state|æs〉 at timet,
given that it was prepared in the same state att ) 0. For this
case, eq2 can be written as eqs 20 and 21;

whereωls ) (El
0 - Es

0)/p, and we have made the replacement
aj(t) f aj(t)e-iEj

0t/p. To solve these equations we first setas(t) )
e-iRsst/p, then eq 21 gives eq 22.

We then substitute eq 22 into eq 20 to obtain eq 23.

To proceed further, we assume that the{|æl〉} manifold is
sufficiently dense to allow switching from summation to
integration. We thus write eq 24;

whereF(El
0) is the density of states in the manifold{|æl〉}. This

equation can be solved forRss by interations untilRss is found
to any required degree of accuarcy. As a first approximation
we neglectRss in the integrand and write eq 25.

For sufficiently larget we may write limtf∞(1 - eiωslt)/ωsl )
P/ωsl - iπδ(ωsl),22 where P indicates the principal value.
Therefore, we get eq 26;

where

The real part ofRssrepresent a correction to the energy to second
order in the perturbation, whereas the imaginary part is a
relaxation rate (inverse lifetime). It follows that the probability
that the system is still in the state|æs〉 at time t is Pss(t) )
|as(t)|2 ) e-Γst, so thatΓs is the decay rate constant. This shows
that |æs〉 f {|æl〉} transitions are now irreversible. Therefore,
to have irreversible transitions and a progressive depletion of
the initial state; it is essential that the initial state be coupled to

a very large number of states with similar energies. It should
be emphasized that eq 28 is an approximate expression for the
decay rate constant.

Likewise, we may evaluate the transition probability from
state|æs〉 to any arbitrary state|æl〉 in time t: Psl(t) ) |al(t)|2
and the total transition probability∑l Psl(t). Using eq 22,
switching from summation to integration, and neglecting the
variation of the matrix elementsVls and the density of states
F(El

0) with energy over a range=Γs aboutEl
0 ) Es

0, it turns out
that∑l Psl(t) ) 1 - Pss(t), as is required by the conservation of
probability.

2.2. Diagonalization of Vibronic Hamiltonian; Adiabatic
and Diabatic Basic Sets.In the treatment of the radiationless
processes in large molecules, one ususally neglects details
concerning the rotational motion and concentrates on the
dynamics of the vibrational and the electronic motions. There-
fore, the vibronic Hamiltonian operator is written asĤ ) T̂e(r )
+ T̂N(Q) + Û(r , Q), whereT̂e is the electronic kinetic energy
operator,T̂N is the vibrational kinetic energy operator, andÛ is
the potential energy of the entire molecule (r andQ symbolize
the electronic variables and vibrational normal coordinates,
respectively.); for the complete rovibronic Hamiltonian, see ref
13. The adiabatic electronic states{|Φn〉} are chosen so as to
diagonalize the electronic Hamiltonian: (T̂e + Û)|Φn〉 )
En(Q)|Φn〉. The full jth vibronic state|ψj〉 can now be expanded
in terms of these adiabatic electronic states as eq 29;

where the coefficientsøn
(j)(Q) are determined by substituting

this expansion into the Schrodinger equation (eq 30).

We obtain a set of coupled nonlinear equations for the
coefficients shown in eq 31;

where the nonadiabatic coupling operatorΛ̂mn(Q) is defined by
eq 32;

with

Equation 35 may be proved by taking the derivative of the
electronic Schrodinger equation with respect toQk, multiplying
each side of the result byΦm

/ (m * n), and integrating over the
electronic variables.

In the adiabatic approximation of Born-Huang,15 the dy-
namic off-diagonal coupling elementsΛ̂mn(Q) are neglected.

ip
d
dt

as(t) ) ∑
l

al(t)Vsle
-iωlst (20)

ip
d
dt

al(t) ) as(t)Vlse
iωlst (21)

al(t) ) -Vls
1 - e-i(Es

0-El
0+Rss)t/p

Es
0 - El

0 + Rss

(22)

Rss) ∑
l

|Vls|21 - ei(Es
0-El

0+Rss)t/p

Es
0 - El

0 + Rss

(23)

Rss) ∫ |Vls|21 - ei(Es
0-El

0+Rss)t/p

Es
0 - El

0 + Rss

F(El
0) dEl

0 (24)

Rss) ∫ |Vls|21 - ei(Es
0-El

0)t/p

Es
0 - El

0
F(El

0) dEl
0 (25)

Rss) ∆s(Es
0) - 1

2
ipΓs(Es

0) (26)

∆s(Es
0) ) P∫ |Vls|2

Es
0 - El

0
F(El

0) dEl
0 (27)

pΓs(Es
0) ) 2π|Vls|2F(Es

0) ) 2π ∑
l

|Vls|2δ(Es
0 - El

0) (28)

|ψj〉 ) ∑
n

øn
(j)(Q)|Φn〉 (29)

Ĥ|ψj〉 ) εj|ψj〉 (30)

∑
n

{[T̂N + En(Q) + Λ̂nn(Q) - εj]δmn +

(1 - δmn)Λ̂mn(Q)}øn
(j)(Q) ) 0 (31)

Λ̂mn(Q) ) - p2

2 ∑
k [ ∫ d3rΦm

/ (r , Q)
∂

2Φn
/ (r , Q)

∂Qk
2

+

2∫ d3rΦm
/ (r , Q)

∂Φn
/ (r , Q)

∂Qk

∂

∂Qk] (32)

〈Φm| ∂

∂Qk
|Φn〉 ) 1

En(Q) - Em(Q)〈Φm| ∂Û
∂Qk

|Φn〉 (33)
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In the adiabatic approximation of Born-Oppenheimer14 the
diagonal elementsΛ̂nn(Q) are neglected as well. By these
approximations, the above coupled equations become decoupled,
and the expansion coefficientsøn

(j)(Q) are interpreted as the
vibrational states belonging to the adiabatic electronic state|Φn〉
and the electronic energyEn(Q) as a PES in which the nuclei
of the molecule perform their vibrational motions. This ap-
proximation is justifiable when the separation of electronic
energy surfaces is large compared with typical energy spacings
of the nuclear motion. Even though a large number of molecular
processes can be interpreted on the basis of this approximation,
there are cases in which the adiabatic approximation is no longer
appropriate.

A definite prescription for finding the exact vibronic states
|ψj〉 and the eigenvaluesεj is to first make the coupled equations
linear by expanding the coefficientsøn

(j)(Q) for each electronic
state|Φn〉 in suitable basic sets{|ønν〉}. The vibronic states now
become eq 34;

in which the expansion coefficientsRnν,j are obtained by
diagonalizing the Hamiltonian matrix. The elements of this
matrix are given by eq 35;

which suggests that the basis sets should be chosen as the
solutions of the unperturbed Hamiltonian (eq 36).

If the electronic integrals in the nonadiabatic coupling operator
Λ̂mn(Q) are taken as constants (the Condon approximation), then
for the harmonic oscillator wavefunctions as a basis set the off-
diagonal elements of the Hamiltonian matrix can be reduced to
the evaluation of Franck-Condon integrals. In a previous work19

we derived general expressions for these integrals between the
diplaced-distorted-rotated harmonic PESs. In a non-Condon
scheme, the functional dependence of the nonadiabatic couplings
is approximated by a single product of Gaussian functions over
the active vibrational modes or by a linear combination of such
product functions,26,27and the dynaminc off-diagonal elements
of the Hamiltonian matrix are calculated.26

However, when two electronic energy surfaces closely
approach or intersect each other, the nonadiabatic coupling
matrix elements become large and even singular (see eq 33).
In this case, it is preferable to introduce an alternative electronic
representation, the so-called diabatic representation; see ref 23
and references therein. The diabatic electronic states{|φn〉} are
defined as a unitary transformation of the adiabatic electronic
states such that the electronic states become smoothly varying
functions of the nuclear coordinates and the derivative coupling
are sufficiently small to be neglected. The expansion of the exact
vibronic states in terms of the diabatic electronic states is given
by eq 37;

where the expansion coefficientsø̃n
(j)(Q) are determined by

substituting eq 37 into eq 30. We obtain, after neglecting the

residual derivatives couplings, the following coupled nonlinear
equations (eq 38);

where Ẽn(Q) ) Λ̃nn(Q) and diabatic coupling elements are
defined by eq 39.

Again, to make eqs 38 linear, we expand the coefficients in
terms of the suitable basis sets{|ø̃nν〉}; thereby the exact vibronic
states become (eq 40);

the Hamiltonian matrix, which is to be diagonalized, has the
following matrix elements (eq 41).

Again, it seems natural that basis sets{|ø̃nν〉} are chosen as the
solutions of eq 42.

It is assumed that the adiabatic PESsEn(Q) (or their diabatic
versions) are a slowly varying function ofQ. Thus, we may
expandEn(Q) for any electronic state about a reference nuclear
configuration (A possible choice for the reference configuration
is the equilibrium nuclear configuration of the ground electronic
state of molecule. We specify the lower state quantities by
double prime and the upper state by single prime.).

whereEn(0′′) is the vertical excitation energy,κj
(n) are the first-

order intrastate coupling constants, andηij
(n) are the second-

order intrastate coupling constants. For the ground electronic
state, that isn ) g, the linear terms vanish andηij

(g) ) ω′′i
2δij,

where{ω′′j } are the set of the angular vibrational frequencies
of the ground electronic state. To remove the linear terms for
the excited electronic states and to diagonalize the symmetric
matrix η(n), we may employ the orthogonal transformation (eq
44, the so-called Duschinsky transformation16);

whereJ is the Duschinsky rotation matrix, andD is a column
vector whose components are the shift of the equilibrium nuclear
configuration of the excited electronic state with respect to that
of the ground electronic state. The matrixJ is chosen such that
to diagonalize the matrixη(n);

where “T’’ stands for the transpose of the matrix, so we obtain
to the second-order of approximation (eq 46);

|ψj〉 ) ∑
nν

Rnν, j|Φnønν〉 (34)

Hmµ,nν ) 〈ømµ|[T̂N + En(Q) + Λ̂nn(Q)]δmn +
(1 - δmn)Λ̂mn(Q)|ønν〉 (35)

[T̂N + En(Q) + Λ̂nn(Q)]|ønν〉 ) εnν
0 |ønν〉 (36)

|ψj〉 ) ∑
n

ø̃n
(j)(Q)|φn〉 (37)

∑
n

{[T̂N + Ẽn(Q) - εj]δmn + (1 - δmn)Λ̃mn(Q)}ø̃n
(j)(Q) ) 0

(38)

Λ̃mn(Q) ) ∫ d3rφm
/ (T̂e + Û)φn (39)

|ψj〉 ) ∑
nν

R̃nν, j|φnø̃nν〉 (40)

H̃mµ,nν ) 〈ø̃mµ|[T̂N + Ẽn(Q)]δmn + (1 - δmn)Λ̃mn(Q)|ø̃nν〉
(41)

[T̂N + Ẽn(Q)]|ø̃nν〉 ) ε̃
0
nν|ø̃nν〉 (42)

En(Q) ) En(0′′) + ∑
j

κj
(n)Q′′j +

1

2
∑

ij

ηij
(n)Q′′i Q′′j + ...

) En(0′′) + Q′′Tκ(n) + 1
2
Q′′Tη(n)Q′′ + ... (43)

Q′ ) JQ′′ + D (44)

Jη(n)JT ) Λ′ ) diag(ω′1
2,ω′2

2, ...,ω′N
2) (45)
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with En(0′) ) En(0′′) - (1/2)DTΛ′D and D ) Λ′-1Jκ(n). A
similar transformation may be used for any electronic excited
state. By these transformations, the basic sets{|ønν〉} become
the harmonic oscillator wavefunctions centered on the corre-
sponding PES. If the anharmonic cubic, quartic, ... terms in eq
43 cannot be neglected, then the anharmonic oscillator wave-
functions should be used as the basic sets. It is found that
anharmonicities may have significant effects on radiationless
transitions in polyatomic molecules.8,41

3. Calculation of Internal Conversion Decay Rate
Constant

Equation 28 can be adapted to a “statistical’’ case of a
complex molecule in which the vibrational relaxation takes place
very rapidly after excitation and leads to a Boltzmann distribu-
tion over the vibrational levels of the initial electronic state.
Therefore, the thermally averaged nonradiative decay rate
constantkIC(Ωab, T) from the statistically equilibrated initial
vibronic states{|aR〉} to the manifold of the final states{|bâ〉}
is given by eq 47;

whereFa(T) is the Boltzmann distribution function for the initial
vibronic states,Ωab is the zero-zero transition frequency,ER
and Eâ are the vibrational energies (excluding the zero-point
energies) of the electronic statesa andb, respectively, andHaR,bâ
are the dynamic off-diagonal elements of the Hamiltonian matrix
that induce the intramolecular nonradiative transitions between
electronic statesa andb.

An alternative expression for eq 47 can be obtained by
employing the generating function of Kubo and Toyazawa.17,18

Inserting the integral representation of the delta function, the
transition rate in eq 47 reads as eq 48;

where the generating functionG(t) is defined by eq 49.

Therefore, if the generating function is available, then the
transition rate calculation may be reduced to a Fourier trans-
formation on G(t). In the following we shall calculate the
generating function for two separate cases: (1) the case in which
the internal conversion takes place between two adiabatic and
(2) the case in which it takes place between two diabatic
electronic states.

3.1. Internal Conversion Between Two Adiabatic Elec-
tronic States. Neglecting the 2-fold differentiation of the
electronic wavefunctions, the first term in the brackets of eq
32, and assuming that the electronic integral in the second term
is independent of the vibrational variables, the simplified off-
diagonal elements of the vibronic Hamiltonian matrix (eq 35)
take the following form;

where P̂′p ) -ip∂/∂Qp′, 〈...〉0 means the value of the matrix
elements in the vicinity of the equilibrium nuclear configuration
of the initial electronic state, andøR andøâ are theN-dimensional
harmonic oscillator vibrational wavefunctions corresponding to
the initial (a) and the final (b) adiabatic electronic states,
respectively.

Introducing eq 50 into eq 49 we may write eq 51;

where Rab(p) ) 〈Φa|P̂′p|Φb〉0, λ′j ) -iω′jt + pω′j /kT, λ′′j )
iω′′j t, and z′ ) Πj)1

N (1 + n′j) in which the mean occupation
numbern′j is defined by eq 52.

The summations over vibrational quantum numbers in eq 51
are calculated by making use of the multidimensional Mehler’s
formula (eq 53);19,20

whereΓ is theN × N diagonal matrix of the reduced frequency
ωj/p, andN × N diagonal matricesT andA are defined by eqs
54 and 55, respectively.

Introducing eq 53 into eq 51 we obtain eq 56;

HaR,bâ ) 〈øR|Λ̂ab(Q)|øâ〉 = ∑
p)1

N

〈Φa|P̂′p|Φb〉0〈øR|P̂′p|øâ〉 (50)

G(t) )
1

z′
∑
p)1

N

∑
p′)1

N

Rab(p)Rab
/ (p′) ∫∫ dQ′ dQh ′ ×

∑
â1)0

∞

... ∑
âN)0

∞

exp(-∑
j)1

N

λ′′j âj)øâ1‚‚‚âN
(Q′′1, ...,

Q′′N)øâ1‚‚‚âN
(Qh ′′1, ...,Qh ′′N) × ∂

∂Q′p

∂

∂Qh ′p′
∑

R1)0

∞

... ∑
RN)0

∞

exp (-∑
j)1

N

λ′jRj)øR1‚‚‚RN
(Q′1, ...,Q′N)øR1‚‚‚RN

(Qh ′1, ...,Qh ′N) (51)

n′j ) [exp(pω′j/kT) - 1]-1 (52)

∑
R1)0

∞

... ∑
RN)0

∞

exp(-∑
j)1

N

λjRj)øR1...RN
(Q1, ...,QN)øR1...RN

(Qh 1, ...,Qh N) )

π-N/2(detΓ-1T)-1/2 exp[-
1

4
(Q + Qh )TΓA(Q + Qh ) -

1

4
(Q - Qh )TΓA-1(Q - Qh )] (53)

Tj ) 1 - exp(-2λj) (54)

Aj )
1 - exp(-λj)

1 + exp(-λj)
(55)

G(t) ) π-N(detΓ′-1Γ′′-1T′T′′)-1/2∑
p)1

N

∑
p′)1

N

Rab(p)Rab
/ (p′)

∫∫ dQ′ dQh ′ × exp[-
1

4
(Q′′ + Qh ′′)TΓ′′A′′(Q′′ + Qh ′′) -

1

4
(Q′′ - Qh ′′)TΓ′′A′′-1(Q′′ - Qh ′′)] ×

∂

∂Q′p

∂

∂Qh ′p′

exp[-
1

4
(Q′ + Qh ′)TΓ′A′(Q′ + Qh ′) -

1

4
(Q′ - Qh ′)TΓ′A′-1 (Q′ - Qh ′)] (56)

En(Q) ) En(0′) + 1
2
Q′TΛ′Q′ (46)

kIC(Ωab, T) ) ∑
R

FR(T)ΓaR )

2π

p
∑

R
∑

â

FR(T)|HaR,bâ|2 δ(pΩab + ER - Eâ) (47)

kIC(Ωab,T) ) ∫-∞

∞
dt exp(iΩabt)G(t) (48)

G(t) )
1

p2
∑

R
∑

â

FR(T)|HaR,bâ|2 exp[i(ER - Eâ)t/p] (49)
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where theN × N diagonal matricesΓ′, Γ′′, T′, T′′, A′, andA′
are defined byΓ′j ) ω′j /p,Γ′′j ) ω′′j /p, and eqs 57a-d, respec-
tively.

After taking the derivatives with respect toQ′p and Qh ′p we
introduce the Duschinsky transformation (eq 44) into the
resulting equation, and then we change variables asQ′ + Qh ′ )
2X andQ′ - Qh ′ ) 2Y to obtain eq 58;

whereN × N symmetric matricesW1 andW2 are defined as
eqs 59 and 60.

The integrations overX andY can now be carried out with the
aid of the Gaussian integration formula evaluated in the appendix
(eqs A5-7). The result is eq 61;

with

where use is made of the matrix identityA-1 ) B-1 + B-1(B
- A)A-1. In this equation,R is the N-dimensional column
vector of{Rp ≡ Rab(p); p ) 1, ...,N}, and the followingN ×
N symmetric matrices are defined (eqs 63 and 64).

Equation 61 is our general expression for the generating
function G(t), which includes the effects of Franck-Condon,
the promoting modes, and the temperature on the nonradiative

rate constants. Notice that in the low-temperature limit
n′jf0, T ′jf1, A′jf1, j ) 1, ...,N.

The transformation matrixJ entangles the normal coordinates
belonging to the same symmetry species so that matrixJ and
all related matricesW1, W2, W3, and W4 (along with their
inverses) are in block diagonal forms. Each block corresponds
to a particular symmetry species, and its dimension is equal to
the number of the vibrational modes that belong to that particular
irreducible representation. Therefore, the expression forG(t)
may be factored out as eq 65;

with

where Γj refers to a particular symmetry species, and the
matrices are now the blocks due to that particular species. The
vibrational normal modes are classified into two group: (1) the
promoting modes, which are capable of performing the non-
radiative transitions, and (2) the accepting modes, which act as
sinks for the electronic energy. If the electronic statesa andb
belong to the same irreducible representation, then the promoting
modes belong to the totally symmetric representation, and if
the electronic states belong to two different irreducible repre-
sentations, then the promoting modes are nontotally symmetric.
For the nontotally symmetric modeQj, Dj ) 0, and for the
accepting modeQj, Rj ) 0.

3.2. Internal Conversion Between Two Diabatic Electronic
States.For this case, the dynamic off-diagonal elements of the
Hamiltonian matrix (eq 41) have the form given by eq 67;

where we have taken a linear expansion forΛ̃ab(Q) about the
equilibrium configuration of the initial diabatic electronic state,
assuming the electronic states belong to different irreducible
representation. In eq 67,ø̃R and ø̃â are the diabaticN-dimen-
sional harmonic oscillator vibrational wavefunctions corre-
sponding to the initial (a) and the final (b) diabatic electronic
states, respectively.

A calculation parallel to that of the adiabatic case leads to
the following expression for the generating function;

where

with R̃p ) (1/p)(∂Λ̃ab(Q)/∂Q′p)0. All matrices (Γ′, Γ′′, T′, T′′,
W1, W2, andW3) in these equations have the same definitions

T′j ) (1 + n′j)
2 - n′j

2 exp(2iω′jt) (57a)

T′′j ) 1 - exp(-2iω′′j t) (57b)

A′j )
(1 + n′j) - n′j exp(iω′jt)
(1 + n′j) + n′j exp(iω′jt)

(57c)

A′′j )
1 - exp(-iω′′j t)

1 + exp(-iω′′j t)
(57d)

G(t) ) (2

π)N

(detΓ′-1Γ′′-1T′T′′)-1/2 exp(-DTJΓ′′A′′JTD) ×

∑
p)1

N

∑
p′)1

N

Rab(p)Rab
/ (p′) ∫∫ dX dY {[-

1

2
(Γ′A′)pp +

1

2
(Γ′A′-1)pp]δpp′ + (Γ′A′)pp(Γ′A′)p′p′XpXp′ -

(Γ′A′-1)pp(Γ′A′-1)p′p′YpYp′ - (Γ′A′)pp(Γ′A′-1)p′p′XpYp′ +

(Γ′A′-1)pp(Γ′A′)p′p′YpXp′} × exp (-XTJW1J
TX +

2XTJΓ′′A′′JTD) exp (-YTJW2J
TY) (58)

W1 ) Γ′′A′′ + JTΓ′A′J (59)

W2 ) Γ′′A′′-1 + JTΓ′A′-1J (60)

G(t) ) 2Nh(t) (detΓ′-1Γ′′-1T′T′′W1W2)
-1/2

exp(-DTW3
-1D) (61)

h(t) ) 1
2
R†(-W3

-1 + W4
-1)R + (R†W3

-1D)(DTW3
-1R)

(62)

W3 ) Γ′-1A′-1 + JΓ′′-1A′′-1JT (63)

W4 ) Γ′-1A′ + JΓ′′-1A′′JT (64)

G(t) ) 2Nh(t) Πj [(det Γ′-1Γ′′-1T′T′′W1W2)
-1/2

exp(-DTW3
-1D)]Γj

(65)

h(t) ) ∑
j

[12R†(-W3
-1 + W4

-1)R]
Γj

+

∑
ij

(R†W3
-1D)Γi

(DTW3
-1R)Γj

(66)

H̃aR,bâ ) 〈ø̃R|Λ̃ab(Q)|ø̃â〉 = ∑
p)1

N (∂Λ̃ab(Q)

∂Q′p )
0

〈ø̃R|Q′p|ø̃â〉 (67)

G̃(t) ) 2N h̃(t) (detΓ′-1Γ′′-1T′T′′W1W2)
-1/2

exp(-DTW3
-1D) (68)

h̃(t) ) 1
2
R̃†J(-W2

-1 + W1
-1)JTR̃ +

(R̃†JW1
-1Γ′′A′′JTD)(DTJΓ′′A′′W1

-1JTR̃) (69)
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as in the adiabatic case, except that the diabatic, rather than
adiabatic, vibrational frequencies have to be used in the related
equations.

4. Application

In this section we shall apply eqs 61, 62, and 48 to calculate
the internal conversion rate constants for two real molecular
systems: ethylene and azulene.

The method of steepest descent, also called the saddle point
method,24 has been successfully applied for the approximate
evaluation of integrals of the type appearing in eq 48.8,25 The
method is based on the observation that the major contribution
from the integrand in integral∫-∞

∞ dt exp[f(t)] comes from the
vicinity of the point ts (called the saddle point) wheref(t) is
maximum [f ′(ts) ) 0]. We have made use of this method to
evaluate the integral in eq 48.

The ethylene molecule has 12 vibrational modes that, in the
ground electronic state, are distributed among the irreducible
representations (ofD2h point group) as 3ag + 2b3g + b2g +
au + 2b1u + 2b2u + b3u (with z-axis along the C-C bond).
Table 1 shows the complete active space self-consistent field
(CASSCF) calculated vibrational frequencies of the ground
(1Ag), the excited valenceπ - π* ( 1B1u), and four Rydbergπ
- 3s(1B3u), π - 3py(1B1g), π - 3pz(1B2g), and π - 3px(1Ag)
states.28 There is no vibrational mode mixing upon excitation
from the ground to the Rydberg states; however, a heavy mixing
of four vibrational modes occurs upon excitation to theπ - π*
(1B1u) electronic state. Theπ - π* state hasD2d symmetry,
and these four modes belong to thea irreducible representation
of the D2 point group, a subgroup ofD2h and D2.28 Table 2
displays the related normalized Duschinsky matrix for these four
totally symmetric modes.29,30 Table 3 contains the electronic
energy gap between the various states, the Haung-Rhys coupling
constants,Sj ) ω′jDj

2/2p, corresponding to the four totally
symmetic modes, and the vibronic coupling constants between
the various singlet electronic states of ethylene.29,30 Finally,
Table 4 presents the calculated internal conversion decay rate
constants for various nonradiative electonic transitions, along
with the promoting modes that induce these transitions in this

molecule. We have calculated the rates for three cases: dis-
placed, displaced-distorted, and displaced-distorted-rotated
models, taking all 12 modes into the calculations. For the
displaced model, the geometic averages of the vibrational
frequenciesω′j and ω′′j, that is (ω′jω′′j )1/2, are used. The calcu-
lated rates of the1B1g ' 1B3u, 1B2g ' 1B3u, and 21Ag ' 1B3u

internal conversions for the displaced model completely agree
with those of refs 28 and 30; however, there is some difference
between the rate of1B1u ' 1Ag internal conversion calculated
here with that of refs 28 and 30. This difference is because we
used the vibrational frequencies corresponding to each electronic
state in our displaced-distored-rotated model, rather than the
geometric averages, as used in refs 28 and 30.

Now we consider the azulene molecule. Because of the large
number of organic molecules known to obey Kasha’s rule1

(fluorescence is only observed from S1 and phosphorescence
from T1), claims of “anomalous’’ emission from the S2, S3, etc.,
and the T2, T3, etc. electronic states should be viewed with
suspicion. However, well-documented cases of S2 f S1

fluorescence are found for azulene and its derivatives.31-34 This
emission is attributed to the relatively large S2-S1 energy gap,
which slows down the normally very rapid rate of S2 ' S1

internal conversion by decreasing the Franck-Condon factors.
Azulene has 48 vibrational modes that, in the ground

electronic state, are distributed among the irreducible representa-
tions (of C2V point group) as 17a1 + 6a2 + 9b1 + 16b2. Table
5 shows the experimental vibrational frequencies of 12a1 modes
and the calculated vibrational frequencies of 5b2 modes in the
ground S0 and excited S1 electronic states, which are taken into
account in the calculation of the rate constant of the S1 ' S0

internal conversion of azulene in the present work. Table 6
displays the Duschinsky matrices ofa1 andb2 modes between
S0 and S1 electronic states; notice that thea1 modesν1, ν6, ν7

remain unrotated from S0 to S1. The electronic energy gap,
Huang-Rhys factors,Sj ) ω′jDj

2/2p, corresponding to the
totally symmetric modesa1, and the vibronic coupling constants
between S1 and S0 electronic states are shown in Table 7.
Finally, Table 8 presents the experimental and the calculated
rate constants of the S1 ' S0 internal conversion of azulene. It
is worth mentioning that the rate constants are computed by
making use ofMathematicaprograms.42

The extremely weak S1 f S0 fluorescence of azulene35

indicates that the competing nonradiative deactivation is most
effective and essentially represents an internal conversion with
a rate constant ofkIC ) 5 × 1011 s-1.35 The rate of S1 ' T 1

intersystem crossing (= 6 × 106 s-1)43 is about 5 orders of
magnitude smaller than the rate of the corresponding internal
conversion process. Therefore, the internal conversion should
be a more important deactivation channel as compared with the
intersystem crossing.

Gustav and Storch37 have also calculated the rate constant
for the S1 ' S0 (as well as for S2 ' S1 and S2 ' S0) internal

TABLE 1: Calculated Vibrational Frequencies (cm-1) of
Ethylene in the Ground and Excited Electronic Statesa

assignment 1Ag
1B1u

1B3u
1B1g

1B2g 21Ag

ag ν1 CH str 2979 2828 2970 2964 2956 3002
ag ν2 CC str 1580 1398 1508 1536 1527 1532
ag ν3 CH2 scis 1286 1227 1227 1234 1192 1234
au ν4 CH2 twist 977 855 502 883 507 333
b1u ν5 CH str 2960 2798 2947 2980 2950 2994
b1u ν6 CH2 scis 1435 1274 1417 1438 1421 1433
b3g ν7 CH str 3032 2840 3093 3065 3040 3099
b3g ν8 CCH bend 1205 908 1207 1190 1178 1212
b3u ν9 CH2 wag 860 666 985 1097 999 856
b2u ν10 CH str 3059 2841 3065 3088 3090 3114
b2g ν11 CH2 wag 813 915 1090 1159 1098 1113
b2u ν12 CCH bend 795 655 796 884 799 816

a Reference 28.

TABLE 2: Normalized Duschinsky Matrix for the a1 Modes
of 1B1u and 1Ag in Ethylenea

Q1′′ Q2′′ Q3′′ Q4′′
Q′1 0.7977 -0.1467 -0.0027 0.5780
Q′2 0.0887 -0.8622 -0.3802 -0.3153
Q′3 -0.1024 0.2951 -0.9156 0.2364
Q′4 -0.585 -0.3822 0.1259 0.7195

a References 29 and 30.

TABLE 3: Energy Gap, Haung-Rhys Factors, and Vibronic
Coupling Constants Between Various Singlet Electronic
States of Ethylenea

1B1g-1B3u
1B2g-1B3u 21Ag-1B3u

1B1u-1Ag

ωab (2π cm-1) 6151 5391 8837 43945
S1 0.006 0.033 0.242 7.258
S2 0.044 0.007 0.020 4.647
S3 0.049 0.081 0.051 1.514
S4 0.577 0.350 1.813 21.038
〈Φa|∂/∂QP′ |Φb〉 (a.u.) 0.2134 (Q′10) 0.0589 (Q′5) 0.1276 (Q′9) 0.0038 (Q′5)

0.1129 (Q′12) 0.2619 (Q′6) 0.0723 (Q′6)
a References 29 and 30.
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conversion of azulene, considering only three (nontotally
symmetric) promoting and three (totally symmetric) accepting
vibrational modes of azulene in a displaced-oscillator model,
and obtainedkIC(S1 ' S0) ) 1.2 × 1010 s-1. However, the
present calculations show that more vibrational modes are
involved in the process, and it obtains results (Table 8) that are
very close (especially from the displaced-distorted model) to
the experimental value. Also, it is notable that the distortions
of vibrational modes cause an increase, whereas the rotations
cause a decrease, in the internal conversion rate constant and
that the promoting modes are more effective in decreasing the
rate than the accepting modes.

5. Summary

We have derived general expressions for calculating the
internal conversion decay rate constants between two adiabatic
electronic states (eqs 61-62) and between two diabatic elec-
tronic states (eqs 68-69). The expressions include the displace-
ments, distortions, and rotations of PESs, as well as the
temperature. Our expression for the internal conversion between
two adiabatic electronic states may be considered as a gener-
alization of that derived in ref 30, because the restrictions on
the number of promoting modes and the temperature have been
relaxed in the present work; besides, making use of matrix
algebra has led to more manageable expressions for the
computational purposes.

For illustration, the internal conversion rate constants between
the various singlet electronic states of ethylene and between S1

and S0 electronic states of azulene have been calculated.

Appendix

Consider the following integral (A1);

where dx ) Πj)1
N dxj, x andq areN-dimensional vectors, and

p is aN × N symmetric matrix. By the linear transformationy
) x - p-1q the integral can be written as eq A2.

TABLE 4: Rates of Internal Conversion between Various Singlet Electronic States of Ethylene

kIC (T ) 0) (s-1) 1B1g '
1B3u

1B2g '
1B3u 21Ag '

1B3u
1B1u '

1Ag

displaced 1.09× 1011(Q′10) 2.97× 1010(Q′5) 4.72× 109(Q′9) 7.49× 107(Q′5)
1.64× 108(Q′12) 4.09× 1010(Q′6) 1.48× 1010(Q′6)

displaced-distorted 4.65× 1010(Q′10) 3.05× 1010(Q′5) 8.70× 109(Q′9) 3.39× 107(Q′5)
9.23× 107(Q′12) 4.44× 1010(Q′6) 7.04× 109(Q′6)

displaced-distorted-rotated 1.81× 107(Q′5)
3.67× 109(Q′6)

TABLE 5: Experimental Vibrational Frequencies (cm-1) of
a1 Modes and Calculated Vibrational Frequencies ofb2
Modes in the Ground S0 and Excited S1 Electronic States of
Azulenea

mode symmetry S0 S1

a1 ν1 406 384
a1 ν2 679 662
a1 ν3 825 857
a1 ν4 900 900
a1 ν5 942 912
a1 ν6 1058 1062
a1 ν7 1212 1213
a1 ν8 1260 1193
a1 ν9 1400 1388
a1 ν10 1443 1447
a1 ν11 1538b 1543
a1 ν12 1585b 1557
b2 ν13 1621 1627
b2 ν14 1481 1498
b2 ν15 1442 1448
b2 ν16 1525 1427
b2 ν17 1400 1349

a References 36 and 39.b These two modes were represented by Page
and co-workers38 by one effective mode of frequency at 1562 cm-1.

TABLE 6: Normalized Duschinsky Matrices for the a1 and
b2 Modes of S0 and S1 Electronic States of Azulene

a1 Modesa,b

Q2′′ Q3′′ Q4′′ Q5′′ Q8′′ Q9′′ Q10′′ Q11′′ Q12′′

Q′2 0.995 -0.085
Q′3 0.081 0.992 -0.058
Q′4 0.992 -0.110
Q′5 0.057 0.107 0.991
Q′8 0.987 0.109 0.053 0.053 0.072
Q′9 -0.099 0.942-0.298 0.093 0.071
Q′10 -0.101 0.236 0.909 0.297 0.135
Q′11 -0.061 -0.126 0.742-0.653
Q′12 0.051 -0.197 -0.254 0.598 0.737

b2 Modesc,d

Q13′′ Q14′′ Q15′′ Q16′′ Q17′′

Q′13 0.72 -0.53 -0.38 -0.22 0.22
Q′14 0.67 -0.63 0.45
Q′15 0.52 0.49 0.72 0.41
Q′16 0.34 -0.25 -0.22 0.48 -0.6
Q′17 -0.2 -0.39

a Reference 36.b Only off-diagonal elements larger than 0.05 are
listed. c Reference 39.d Only off-diagonal elements larger than 0.2 are
listed.

TABLE 7: Energy Gap, Haung-Rhys Factors, and Vibronic
Coupling Constants for the S1-S0 in Azulene

ωab (2π cm-1)a 14260
S1

b 0.146
S2 0.251
S3 0.794
S4 0.133
S5 0?
S6 0?
S7 0?
S8 0.214
S9 0.527
S10 0?
S12

c 0.588

〈Φa|∂/∂QP′ |Φb〉 (a.u.)a 4.905(Q′15)
3.961(Q′17)

a Reference 37.b References 36 and 38.c This is the combined
displacement for the 1557 and 1543 cm-1 modes.

TABLE 8: Rate of the S1' S0 Internal Conversion of
Azulene

kIC (T ) 0) (s-1) S1 ' S0

experimental 5× 1011a

g1010b

displaced 3.33× 1011

displaced-distorted 5.15× 1011

displaced-distorted, only promoting modes rotated 1.00× 1011

displaced-distorted, only accepting modes rotated 3.71× 1011

displaced-distorted-rotated 6.81× 1010

a Reference 35.b Reference 40.

I ) ∫-∞

∞
dx xkxl exp(-xTpx + 2xTq) (A1)
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By the unitary transformationy ) θu, whereθ is chosen to
yield the diagonal matrixλ:θTpθ ) λ, it becomes eq A3.

Notice that detθ ) 1. Integrals over the odd integrands vanish
and we obtain eq A4.

Finally, we get eq A5.

Accordingly, we get eqs A6-7.

References and Notes

(1) Kasha, M.Discuss. Faraday Soc. 1950, 9, 141.
(2) Robinson, G. W.J. Mol. Spectrosc. 1961, 6, 58.
(3) (a) Robinson, G. W.; Frosch, R. P.J. Chem. Phys. 1962, 37, 1962.

(b) Robinson, G. W.; Frosch, R. P.J. Chem. Phys. 1963, 38, 1187.
(4) Hunt, G. R.; McCoy, E. F.; Ross, I. G.Aust. J. Chem. 1962, 15,

591.
(5) Lin, S. H.J. Chem. Phys. 1966, 44, 3759.

(6) Lin, S. H.; Bersohn, R.J. Chem. Phys. 1968, 48, 2732.
(7) (a) Bixon, M.; Jortner, J.J. Chem. Phys. 1968, 48, 715. (b) Bixon,

M.; Jortner, J.J. Chem. Phys. 1969, 50, 3284. (c) Bixon, M.; Jortner, J.J.
Chem. Phys. 1969, 50, 4061.

(8) Medvedev, E. S.; Osherov, V. I.Radiationless Transitions in
Polyatomic Molecules; Springer-Verlag: New York, 1995.

(9) Heller, E.Acc. Chem. Res. 1981, 14, 368.
(10) Sando, G. M.; Spears, K. G.J. Phys. Chem. A 2001, 105, 5326.
(11) Kotelnikov, A. I.; Medvedev, E. S.; Medvedev, D. M.; Stuche-

brukhov, A. A.J. Phys. Chem. B2001, 105,5789.
(12) Cohen-Tannoudji, C.; Diu, B.; Laloe¨, F. Quantum Mechanics;

Wiley: New York, 1977.
(13) (a) Islampour, R.; Kasha, M.Chem. Phys.1983, 74, 67. (b)

Islampour, R.; Kasha, M.Chem. Phys.1983, 75, 157.
(14) Born, M.; Oppenheimer, R.Ann. Phys. 1927, 84, 457.
(15) Born, M.; Huang, K.Dynamical Theory of Crystal Lattices; Oxford

University Press: New York, 1956.
(16) Duschinsky, F.Acta Phisicochim. URSS1937, 7, 551.
(17) Kubo, R.Phys. ReV. 1952, 86, 929.
(18) Kubo, R.; Toyozawa, Y.Prog. Theor. Phys.1955, 13, 160.
(19) Islampour, R.; Dehestani, M.; Lin, S. H.J. Mol. Spectrosc. 1999,

194, 179.
(20) Islampour, R.; Dehestani, M.; Lin, S. H.Mol. Phys.2000, 98, 101.
(21) Mukamel, S.Principles of Nonlinear Optical Spectroscopy; Oxford

University Press: New York, 1995.
(22) Di Bartolo, B. InRadiationless Processes; Di Bartolo, B., Goldberg,

V., Eds.; Plenum Press: New York, 1980.
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I ) exp(qTp-1q) ∫-∞

∞
dy(y + p-1q)k(y + p-1q)l

exp(-yTpy) (A2)

I ) exp(qTp-1q) × ∫-∞

∞
du[∑

j)1

N

θkjuj + (p-1q)k][∑
j)1

N

θljuj +

(p-1q)l] exp(-uTλu) (A3)

I ) exp(qTp-1q) ∫-∞

∞
du[∑

j)1

N

θkjθljuj
2 + (p-1q)k(p

-1q)l]

exp(-∑
j)1

N

λjuj
2) ) exp(qTp-1q)[12∑j)1

N θkjθlj

λj

+

(p-1q)k(p
-1q)l]( πN

λ1 ... λN
)1/2

(A4)

I ) [12(p-1)kl + (p-1q)k(p
-1q)l]( πN

detp)1/2

exp(qTp-1q) (A5)

∫-∞

∞
dxxk exp(-xTpx + 2xTq) ) (p-1q)k( πN

detp)1/2

exp(qTp-1q) (A6)

∫-∞

∞
dx exp(-xTpx + 2xTq) ) ( πN

detp)1/2

exp(qTp-1q) (A7)
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