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Dynamics of Radiationless Transitions: Effects of DisplacementDistortion —Rotation of
Potential Energy Surfaces on Internal Conversion Decay Rate Constarit$
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Department of Chemistry, Usrsity for Teacher Education, 49 Mofatehehue, Tehran, Iran
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General expressions for calculating the internal conversion decay rate constants between two adiabatic electronic
states and between two diabatic electronic states are derived. The expressions include the displacements,
distortions, and rotations of potential energy surfaces as well as the temperature. For illustration, internal
conversion rate constants between various singlet electronic states of ethylene and between the first excited
S; and the ground §singlet electronic states of azulene are calculated.

1. Introduction the displacements of potential energy surfaces (PESs) play a
predominant role in radiationless processes, it is believed that
the distortions and the rotations of these surfaces may also play
a significant rolé-1 In our derivation we have taken all three
effects as well as the whole set of vibrational normal modes
into account. For illustration, we calculated the internal conver-

Perhaps the most convincing experimental evidence for
radiationless transitions was provided by Kasha in 1950, which
has been known as Kasha's rule ever sihcdlith rare
exceptions, polyatomic molecular luminescence was observed

onl?/_ flfo_m the lowest hgxrfltedblelelctromc_ state of a g|\_/e3 sion decay rate constants between various singlet electronic
multiplicity, no matter which stable electronic state was exc_|te ' states of ethylene and between theaBd $ electronic states
Fluorescence always occurred from the lowest excited singlet ¢ o\ 1ane

state and phosphorescence occurred from the lowest triplet state.

Kasha discriminated between two types of radiationless transi-, General Considerations

tions, the one occurring between states of the same multiplicity, ) ) . .

which he called internal conversion, and the one occurring  2-1. Static and Dynamic Aspects of PerturbationsConsider
between states of different multiplicity, called intersystem @ Physical system with a time-independent Hamiltoniif) (
crossing. Such processes are necessarily energy-conserving it Which the Schrodinger equatior®/¢;0= E|¢j0can be

an isolated molecule, so the electronic energy difference is solved exactly for the eigenstates and eigenvalues of the bound
converted into excess vibrational energy. stationary states. Assume that we want to take into account an

A theory that had success in at least qualitatively describing €xternal perturbation or interactions internal to the system,
these transitions in large molecules was outlined by Robinson Nitially neglected inH®. The Hamiltonian now becomes =
and Frosch®and was formulated in a somewhat different way H° + V., whose eigenstates and eigenvalues will be denoted by
by Hunt et at The formal theory of the intramolecular |¥iCANdE; respectively. We shall assume here that the coupling
nonradiative transitions in isolated (collision-free) polyatomic (O perturbation)V is time-independent. Two aspects\6fare
molecules of sufficient size was put forward by Bfrand by~ as follows#? (1) {E}} are not the possible energies (the static
Bixon and Jortnef,who attempted to reformulate the entire aspect) and (2)|¢;} are not the stationary states (the dynamic
problem of radiationless transitions by being more explicit about €ffect) of the system any more. So we are faced with two
the coupling mechanism that was responsible for the radiation- problems, first is the calculation ¢E} in terms of{E} and
less process and to establish the criteria that make an irreversibléhe matrix elements of;; of V, and second is the calculation of
radiationless relaxation process possible. They have attributedthe transition rate among various unperturbed stflgg} in
the nonstationary character of the excited electronic states to aterms of the same quantities. We shall now investigate these
coupling between vibrational and electronic motion brought two aspects quantitatively.

about by a breakdown of the Ber®ppenheimer approximation Let eq 1 be the state vector of the system at the indtant
(in case of internal conversion) plus the sporbit coupling "

(in case of intersystem crossing). For a list of other contributors = _ s 1
to the subject, the reader is referred to the book by Medvedev v J;a](t)kp] (1)

and Osherof¥. A

The aim of the present paper is to derive new general The evolution of|y(t)0in the presence of the coupliny)(is
expressions for the internal conversion decay rate constantsgiven by the Schrodinger equatiah(d/dt)|y (0= (H° +
which includes the effects of FranelCondon (the displace-  V)Iy ()L Projecting this equation onto the basis vec{digl},
ment-distortion—rotation of harmonic potential energy sur- We obtain eq 2 (without loss of generality we may ¥et =
faces), the promoting modes, and the temperature. Even thoughVzz = ... = Von = 0):

T Part of the “Sheng Hsien Lin Festschrift”.
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Let us consider a solution in the form of eq 3; n )
. aS(t) = Z'aSJ_'Ze*IEﬁ/h (12)
at)=oe ™ k=1,2,..n ©) =

wherea, ..., a, are constants to be determined. Substitution of the probability amplitude of finding the system at titnie the
eq 3 into the system in eq 2 results in the algebraic equationsStateélgiljassuming it was prepared in the stateatt = 0, is

of eq 4. given by eq 13.
n n "
_ * —iE;t/i
Z[akj(EjO —E)+Voy=0 k=1,2,..n (4 a(t) = Zasja.je 5 (13)
i= =
These equations have nontrivial (nonzero) solutions if and only ~ AS an example we consider a physical system that has two
if the determinant of the coefficients vanishes (eq 5). states whose energies are close together and very different from
those of all other states of the system. If the perturbation is
det [5kj(EjO —BE)+Vy=0 kj=1,..n (5) sufficiently weak we can calculate its effects on the two states
by ignoring all the other energy levels of the system. In other
This characteristic equation is a polynomial of degnéa the words, we can confine ourselves to a two-dimensional (2D)

unknownE. Its rootsEy, E, ..., Eq give the desired eigenvalues subspace of the state space. In this case the roots of the
of H. By substituting each eigenval@&into the set of algebraic ~ characteristic eq 5 are given by both parts of eq 14.
equations of eq 4 and invoking the requirement of normalization,

we then obtain the elements;, o, ..., i Of thejth eigenvector. E, = 1(E2 + Eg) 4 1\/(E(1) — Eg)Z 4 4|V12|2 (14a)
This procedure yields a fundamental set of solutions (eq 6). 2 2
oy B E,= %(Ef +Ep) — %\/(E‘l’ —E)°+4V,,[° (14b)
azje—iEJt/h o . . . .
. =12, ..n (6) Substitutinge; andE; into the system given by eq 4 and making
’ iE A use of the normalization condition, we obtain egs 15 and 16,
i€ respectively:?
Thus the general solution to the system in eq 2 on the interval 0 0 .
—w <t<+towiseq?7. 0y, = COS7 e o, = sin3 g2 (15)
d : 0 i 0
at) = Z(:jakje"Elt’h k=1,2,..n 7 o, = —sing e " o= cosy g2 (16)
=
To find the constantsy, ¢, ..., ¢, we need some initial ~ Where tand = 2|Vil/(E] — Ep), Vi = [Vig e ¥ with 0 < 6 <
conditions. If the initial conditions are given, then these constants 77 and 0= ¢ < 2. With the initial conditionsa;(0) = 1, a>(0)
can be determined by solving the algebraicx n system, =0, egs 12 and 13 become egs 17 and 18.
resulting from substituting the conditions into general solution 0 0
eq 7. Suppose the system is prepared in the $faféat timet a,(t) = co$ - g Eh 4 i Z g iEAR (17)
= 0, we can then write eq 7 as eq 8; 2 2
n a,(t) = sing Cosg #(e B — g 1ElRy (18)

a(0)= chakj =0, k=1,..,n (8)
= The probability of finding the system at timen the state
|@20) assuming it was prepared in the statelat timet = 0,

which simply implies that; = a’s‘j,j =1, 2, ...,n. Combining is given by eq 19.

this with eq 7 and substituting the results into eq 1 we obtain
the state vector of the system as eq 9;

lay(t)|* =
4 —iEjth 4V,,)* P \/ 0 _ EOoy2 2 t

lyp(t)C= Za’;—e Sy 9) si [ (EY — ED)? + 4|V, —] (19)

1= (E(l) - E(z))z + 4|V12|2 2h
with eq 10. This expression is sometimes called Rabi’s fornddlave

n observe that this probability oscillates over time with a frequency
0 _ . . . .
=S oyl 0 (10) of (E; Eg)/h. Accordingly, the probability of finding the

= system in the statep1[] which is 1 at time = 0, again becomes
o . . 1 at timest = 2n7h/(E; — Ex) withn=0, 1, 2, .... WherE] =
Because the matria;; is unitary, the inverse of eq 10 is eq 11. Eg’ the coupling causes the system to oscillate completely
n from one state to the other with a frequency proportional to the
0= o |y, 0 (11) coupling _matrix element. This means that in a two-state system
) U the transitions between two unperturbed states are reversible.
As a second example, we now consider a multistate system
Likewise, the probability amplitude that the system is still in in which a single stat@psCicouples to a large number of states
the statelgslis given by eq 12; {|l@}, assuming that there is no coupling in e, manifold.
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This model, which reasonably describes the irreversibility of

radiationless transitions, was proposed by Wigner and Weiss-

kopf2! For this model we can find approximate expressions for
the expansion coefficients without carrying out Hamiltonian
matrix diagonalization. We are interested in calculating the
probability of the system to be found in the stégelat timet,
given that it was prepared in the same state=at0. For this
case, eg2 can be written as eqs 20 and 21;

hGa0 = 3 a0V

—iwst

s€ (20)

Ih—an(t) a(BVi e (21)
wherews = (EI - Eo)lh and we have made the replacement
a(t) — aj(t)e BV, To solve these equations we first agt) =

e RdM then eq 21 gives eq 22.

1— e—i(EQ—EP+RSS)t/h
a(t) = Vg (22)
Eo—E +R
We then substitute eq 22 into eq 20 to obtain eq 23.
1— |(E° EP+Rsth
Re= 2 | |s|2 5 (23)
—E +R,

To proceed further, we assume that the) manifold is
sufficiently dense to allow switching from summation to
integration. We thus write eq 24;

p(EY) dE

= '5'21 + Ry

wherep(Elo) is the density of states in the manifditty;. This
equation can be solved f&s by interations untiRssis found

to any required degree of accuarcy. As a first approximation
we neglectRss in the integrand and write eq 25.

ol (E-EP+Rth
(24)

21 — e'(Es EP)th

f Vil E0

S I

=————p(E) dE? (25)

For sufficiently larget we may write lim—.(1 — €2st)/wg =
Plwg — imd(ws),?? where P indicates the principal value.
Therefore, we get eq 26;

R = ALED) — ST (ED)

(26)
where

| Is|

(27)

A(E) = Pf

AT (EY) = 271|Vg|°0(EY) = 27 Z IVie?0(ES — Ef) (28)

OP(EO) dEI

The real part oRssrepresent a correction to the energy to second
order in the perturbation, whereas the imaginary part is a
relaxation rate (inverse lifetime). It follows that the probability
that the system is still in the statesat timet is Ps{t) =
lag(t)|2 = e7T4, so thatl's is the decay rate constant. This shows
that |ps0— {|@/0 transitions are now irreversible. Therefore,

to have irreversible transitions and a progressive depletion of

the initial state; it is essential that the initial state be coupled to

Islampour and Miralinaghi

a very large number of states with similar energies. It should
be emphasized that eq 28 is an approximate expression for the
decay rate constant.

Likewise, we may evaluate the transition probability from
state|@sJto any arbitrary stateyp,[in time t: Pg(t) = |a(t)|?
and the total transition probability, Pg(t). Using eq 22,
switching from summation to integration, and neglecting the
variation of the matrix elementgs and the density of states

p(E?) with energy over a rangeT's aboutE} = E2, it turns out

thaty Pg(t) = 1 — Ps{t), as is required by the conservaﬂon of
probability.

2.2. Diagonalization of Vibronic Hamiltonian; Adiabatic
and Diabatic Basic SetslIn the treatment of the radiationless
processes in large molecules, one ususally neglects details
concerning the rotational motion and concentrates on the
dynamics of the vibrational and the electronic motions. There-
fore, the vibronic Hamiltonian operator is written lds= Te(r)
+ Tn(Q) + O(r, Q), whereT, is the electronic kinetic energy
operator Ty is the vibrational kinetic energy operator, adds
the potential energy of the entire molecuteahdQ symbolize
the electronic variables and vibrational normal coordinates,
respectively.); for the complete rovibronic Hamiltonian, see ref
13. The adiabatic electronic statgsb,[j are chosen so as to
diagonalize the electronic Hamiltonian:Te( + U)|®n0=
En(Q)|®nL The full jth vibronic statey;Ccan now be expanded
in terms of these adiabatic electronic states as eq 29;

Y=Y WQIe,0 (29)

where the coefficientsgﬂ)(Q) are determined by substituting
this expansion into the Schrodinger equation (eq 30).
Hiy,0= ¢ly,0 (30)

We obtain a set of coupled nonlinear equations for the
coefficients shown in eq 31;

> {[Tn+ EQ + An(Q — €10+

1 = O A} P(Q =0 (31)

where the nonadiabatic coupling operata{(Q) is defined by
eq 32;

I (r Q.

ApdQ) = ok (r, Q———

53

k

n( Q)a

2 [ dr ) (r, Qs (32)

with

h FTOEET @[] @9

Equation 35 may be proved by taking the derivative of the
electronic Schrodinger equation with resped@iomultiplying
each side of the result b}, (m= n), and integrating over the
electronic variables.

In the adiabatic approximation of BorHuang?!® the dy-
namic off-diagonal coupling elemenfs{(Q) are neglected.

d
™ 0Q an
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In the adiabatic approximation of BorOppenheimér the residual derivatives couplings, the following coupled nonlinear
diagonal elements\,(Q) are neglected as well. By these equations (eq 38);

approximations, the above coupled equations become decoupled, . B ~ A

and the expansion coefficienid)(Q) are interpreted as the Z {[Ty + E(Q) = )0+ (1 = 0, A (Q}70(Q) =0
vibrational states belonging to the adiabatic electronic $@&iel n (38)
and the electronic enerdy,(Q) as a PES in which the nuclei
of the molecule perform their vibrational motions. This ap- where E(Q) = An(Q) and diabatic coupling elements are
proximation is justifiable when the separation of electronic gefined by eq 39.

energy surfaces is large compared with typical energy spacings

of the nuclear motion. Even though a large number of molecular r _ 3. ok (5 %

processes can be interpreted on the basis of this approximation, AnlQ) f dr g (Te + Uy (39)
there are cases in which the adiabatic approximation is no IongerAgain to make eqs 38 linear, we expand the coefficients in

appropriate. o o o terms of the suitable basis s¢t§,,[J; thereby the exact vibronic
A definite prescription for finding the exact vibronic states  ¢;atas become (eq 40):

|y;Cand the eigenvaluesis to first make the coupled equations
linear by expanding the coefficienxﬁ)(Q) for each electronic [y 0= Z &, il b gD (40)
state|®,,[in suitable basic sefdyn 3. The vibronic states now =L T
become eq 34,
the Hamiltonian matrix, which is to be diagonalized, has the

|1/)]-D= Z anvj|q)anVD (34) following matrix elements (eq 41).
n . A ~ ~ -
Hmu,nv = |:AngrnuH:TN + Ex(Q)]0mn + (1 = O A Q) 1%, U
in which the expansion coefficienta,,; are obtained by (41)
diagonalizing the Hamiltonian matrix. The elements of this
matrix are given by eq 35; Again, it seems natural that basis sgffg,J are chosen as the

. . solutions of eq 42.
Hmu,nv = Bknﬂ[TN + En(Q) + Ann(Q)]émn + A ~ . 0~
(1= O A Q12,0 (35) [Ty E(Qn L= & vl (42)

which suggests that the basis sets should be chosen as the Itis assumed that the adiabatic PES(Q) (or their diabatic

solutions of the unperturbed Hamiltonian (eq 36) versions) are a slowly varying function @. Thus, we may
P q ’ expandEn(Q) for any electronic state about a reference nuclear

A A configuration (A possible choice for the reference configuration

[Ty + Ei(Q) + An( Q1 = €yl 0 (36) is the equilibrium nuclear configuration of the ground electronic
o ) ) ) ) state of molecule. We specify the lower state quantities by

If the electronic integrals in the nonadiabatic coupling operator goyple prime and the upper state by single prime.).

Amr(Q) are taken as constants (the Condon approximation), then

for the harmonic oscillator wavefunctions as a basis set the off- 1

diagonal elements of the Hamiltonian matrix can be reduced to En(Q) = E(0") + z KQ+ = Z 7QQ ' ...

the evaluation of FranekCondon integrals. In a previous wéfk ] 24

we derived general expressions for these integrals between the _ . DT ) L LT A

diplaced-distorted-rotated harmonic PESs. In a non-Condon =E(0)+ QT H5Q" QT+ (43)

scheme, the functional dependence of the nonadiabatic couplings

is approximated by a single product of Gaussian functions over whereE,(0") is the vertical excitation energy'” are the first-

the active vibrational modes or by a linear combination of such ger intrastate coupling constants, are the second-

product functiong?>2’and the dynaminc off-diagonal elements g ger intrastate coupling constants. For the ground electronic

of the Hamiltonian matrix are calculatég. state, that i1 = g, the linear terms vanish anff® = /',
N f ’ i ijr
However, \{vhen two electronic energy sqrfacgs closelly where{w;'} are the set of the angular vibrational frequencies
approach or intersect each other, the nonadiabatic COLIIDIIrlgof the ground electronic state. To remove the linear terms for

Imatl:]r_lx elemetn_ts befcomtﬁ Iz:rg_etar(ljd even slltngule;r (sele etq 3.3)the excited electronic states and to diagonalize the symmetric
ninis case, IL1s preterablé to introduce an aftterna _|ve-e ECroniC yatrix 7™, we may employ the orthogonal transformation (eq
representation, the so-called diabatic representation; see ref 2 :

) ; . ; 4, the so-called Duschinsky transformatin
and references therein. The diabatic electronic s{ag} are
defined as a unitary transformation of the adiabatic electronic Q=JQ"+D (44)
states such that the electronic states become smoothly varying
functions of the nuclear coordinates and the derivative coupling whereJ is the Duschinsky rotation matrix, arialis a column
are sufficiently small to be neglected. The expansion of the exactvector whose components are the shift of the equilibrium nuclear
vibronic states in terms of the diabatic electronic states is given configuration of the excited electronic state with respect to that

by eq 37; of the ground electronic state. The matixs chosen such that
_ to diagonalize the matrix®;
0= Y Qg0 (37)
= g WO IO = A = diagy’ 0y’ . o)) (45)

where the expansion coefficienﬁ%)(Q) are determined by  where “T” stands for the transpose of the matrix, so we obtain
substituting eq 37 into eq 30. We obtain, after neglecting the to the second-order of approximation (eq 46);
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_ N LT R N R R
E(Q) =E(0) +507AQ @0 H, = TlALQIO= > Py Pylzy0 (50)
£
with Ey(0') = Ey(0") — (1/2DTA'D andD = A1, A where P = —ikd/dQ,’, [.[§ means the value of the matrix

similar transformation may be used for any electronic excited gjements in the vicinity of the equilibrium nuclear configuration
state. By these transformations, the basic ¢t} become of the initial electronic state, ang andy,, are theN-dimensional

the harmonic oscillator wavefunctions centered on the CorTe- p,monic oscillator vibrational wavefunctions corresponding to
sponding PES. If the anharmonic cubic, quartic, ... terms in €q yhe initial (a) and the final §) adiabatic electronic states,
43 cannot be neglected, then the anharmonic oscillator Wave-regpectively.

functions should be used as the basic sets. It is found that Introducing eq 50 into eq 49 we may write eq 51
anharmonicities may have significant effects on radiationless '
transitions in polyatomic molecul&s?!

1NN _
G(t)—;;pZRab(p)R;b(p) J [ dQ dQ' x

3. Calculation of Internal Conversion Decay Rate

Constant o w N
. . XpE ) 4B
Equation 28 can be adapted to a “statistical” case of a ﬂ;o ﬁszoe ol ;AJ ﬂJ)X/fl'"ﬂN(Ql
complex molecule in which the vibrational relaxation takes place ° o
very rapidly after excitation and leads to a Boltzmann distribu- Q) (Q" Q) x — d
tion over the vibrational levels of the initial electronic state. NIAB =Pyl N 6Q, 8Q, o "o

Therefore, the thermally averaged nonradiative decay rate N
constantkic(Qan, T) from the statistically equilibrated initial N ey ! . A A
vibronic stateg |aa} to the manifold of the final statggb30} exp ( JZAJQJ)X%"'“N(QP 0 Qullaya(Qu - Q) (B1)
is given by eq 47;

where Ry(p) = @, P @, A = —ioft + holKT,A' =
HONY? N no: . .
Q.= Po(MTy, = iwi't, andzZ = I;_,(1 + n)) in which the mean occupation
Ke(Ea Z * a nulmbernj’ is defir{ed by eq] 52.

21
n Z Z Po(M)Hagpl” 0N + E, — Ey) (47) y = [exp(ioj/kT) — 1] (52)

The summations over vibrational quantum numbers in eq 51
wherepy(T) is the Boltzmann distribution function for the initial ~ are calculated by making use of the multidimensional Mehler's
vibronic statesQay is the zere-zero transition frequencyg, formula (eq 53):9:20
and E; are the vibrational energies (excluding the zero-point . N
energies) of the electronic staeandb, respectively, anéaq s = = =
are the dynamic off-diagonal elements of the Hamiltonian matrix aZO QZOeXp( Z’liaj)x%--%(Ql’ Qa0 (Qu o0 Qu) =
that induce the intramolecular nonradiative transitions between " :

1 _ _
electronic statea andb. a V¥(detr ') 2 exp{— “Q+QTAQ+0Q) -
An alternative expression for eq 47 can be obtained by 14
employing the generating function of Kubo and Toyazaw#. L AVTrA-lA A
Inserting the integral representation of the delta function, the 4(Q QTA QR-Q) (53)

transition rate in eq 47 reads as eq 48;
wherel is theN x N diagonal matrix of the reduced frequency

w wjlh, andN x N diagonal matrice§ andA are defined by eqgs
kic(QapT) = [, dt exp(Q.)G(1) (48) 54 and 55, respectively.
where the generating functid®(t) is defined by eq 49. T;=1—exp(-24) (54)
1—exp(=4)
1 , O W (55)
G(t) = FTZ z ; Pa(MIHaq051” €XPI(E, — EgU/A] (49) 1+ exp(-4)
(08

Introducing eq 53 into eq 51 we obtain eq 56;
Therefore, if the generating function is available, then the NN
transition rate calculation may be reduced to a Fourier trans- _ _-N =L =1y —1/2 )
formation onG(t). In the following we shall calculate the G(t) =& “(detI” T ~T'T") pZ\leRab(p)R:b(p)

generating function for two separate cases: (1) the case in which 1
the internal conversion takes place between two adiabatic and dO' dO' x exd — —(QO" + O T"A"(Q" + O") —
(2) the case in which it takes place between two diabatic ff QR F{ 4(Q ) @ Q)
electronic states. 1 R 1 _

3.1. Internal Conversion Between Two Adiabatic Elec- —(Q" Q") T"A" (Q" — Q") x
tronic States. Neglecting the 2-fold differentiation of the 4
electronic wavefunctions, the first term in the brackets of eq iiexp _E
32, and assuming that the electronic integral in the second term Q;, a(g;) 4
is independent of the vibrational variables, the simplified off- 1
diagonal elements of the vibronic Hamiltonian matrix (eq 35) ~Q' - Q')TF'A"l Q — Q)] (56)
take the following form; 4

@Q+Q)TAQ +Q) -
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where theN x N diagonal matrice$”, I'"', T', T", A’, andA’
are defined byI'; = w;/h,I''= w;'/h, and eqs 57ad, respec-
tively.

r— n2 2 .
Tj= 1+ n)" — n"exp(dwjt) (57a)
Ti'=1— exp(-2iw]') (57b)
1+ n) —n explow;t
(0 — nexple]) (57¢)
(1+m) + n explwit)
1—expio't
= Py (57d)

A=17 exp(-io!'t)

After taking the derivatives with respect @, and _Q we
introduce the Duschinsky transformation (eq 44) into the
resulting equation, and then we change variable®'as Q' =

2X andQ' — Q' = 2Y to obtain eq 58;

2\N
G(t) = (—) (detl" T *T'T") "2 exp(-DTII"A"J'D) x
T,

N N 1
2 2 RalPR(p) [ [ dx dY {[—E(F'Avpp +
p=1p=1

1

E(F'A'_l)pp 6pd + (F'A')pp(F'A’)p’p’Xpo’ -

N a1 N a1
(CA ™ (CA LYYy — (DAY (DAY, XY +

(F’A'1)pp(F'A')p,p,Ypo,} x exp XTIW,ITX +
2XTIr"A"J'D) exp YTIW,JTY) (58)

whereN x N symmetric matrice$V; and W, are defined as
egs 59 and 60.

wW,=T"A"+ JT'AJ (59)
W,=T"A"""+ A (60)

The integrations oveX andY can now be carried out with the

aid of the Gaussian integration formula evaluated in the appendix

(egs A5-7). The result is eq 61;
G(t) = 2"n(t) (detl" T T T"W,W,) ¥
EXp(—DTW?’le) (61)

with

h(t) = %RT(—W;l + W, )R + (R'W, 'D)(D'W, 'R)
(62)
where use is made of the matrix identdy ! = B~1 + B71(B
— A)A~L In this equationR is the N-dimensional column

vector of{R, = Ray(p); p = 1, ...,N}, and the followingN x
N symmetric matrices are defined (egs 63 and 64).
W3 — r'*lAr*l 4 ‘JrnflAu*lJT (63)

W, =T""A"+Jr"*A"J7 (64)

Equation 61 is our general expression for the generating

function G(t), which includes the effects of FranekCondon,
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rate constants. Notice that in the low-temperature limit
n—0,T—1,A—L1j=1,..,N

The transformation matrix entangles the normal coordinates
belonging to the same symmetry species so that materd
all related matricedVi, W,, W3, and W, (along with their
inverses) are in block diagonal forms. Each block corresponds
to a particular symmetry species, and its dimension is equal to
the number of the vibrational modes that belong to that particular
irreducible representation. Therefore, the expressionGigy
may be factored out as eq 65;

G(t) = 2"h() T1; [(det T T T T"W,W,) "
exp(-D'W5 D)y, (65)

with

1
h(t) = Z ERT(—w;l + W, R ) +
] i
> (RTws_lD)ri(DTW?,_lR)ri (66)
1]

where Ij refers to a particular symmetry species, and the
matrices are now the blocks due to that particular species. The
vibrational normal modes are classified into two group: (1) the
promoting modes, which are capable of performing the non-
radiative transitions, and (2) the accepting modes, which act as
sinks for the electronic energy. If the electronic staesdb
belong to the same irreducible representation, then the promoting
modes belong to the totally symmetric representation, and if
the electronic states belong to two different irreducible repre-
sentations, then the promoting modes are nontotally symmetric.
For the nontotally symmetric mod®;, D; = 0, and for the
accepting mod&);, R = 0.

3.2. Internal Conversion Between Two Diabatic Electronic
States.For this case, the dynamic off-diagonal elements of the
Hamiltonian matrix (eq 41) have the form given by eq 67;

A Q)
9Q,

N

F'aa,bﬁ = [}?txmab(Q)UNCﬁDg
=

(%o Qpl70) (67)
0

where we have taken a linear expansion Agg(Q) about the
equilibrium configuration of the initial diabatic electronic state,
assuming the electronic states belong to different irreducible
representation. In eq 6%, andjy, are the diabatidN-dimen-
sional harmonic oscillator vibrational wavefunctions corre-
sponding to the initial) and the final ) diabatic electronic
states, respectively.

A calculation parallel to that of the adiabatic case leads to
the following expression for the generating function;

G(t) = 2" h(t) (det” T T T"W,W,) M2
exp(-D'W, D) (68)

where
A(t) = %m(—wz‘1 +W, IR +
(ﬁwalflrnA;rJTD)(DTJrnAqufl\]TQ) (69)

with R, = (1/h)(9A,,(Q)/0Q,),. All matrices @, I, T', T",

the promoting modes, and the temperature on the nonradiativeWi, W», andW3) in these equations have the same definitions
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TABLE 1: Calculated Vibrational Frequencies (cm™1) of TABLE 3: Energy Gap, Haung-Rhys Factors, and Vibronic
Ethylene in the Ground and Excited Electronic State3 Coupling Constants Between Various Singlet Electronic
assignment  1Aq B  Baw By By 2¥Ag States of Ethylené
1 __1 1 _1 1A 1 1 _1
a, viCHstr 2979 2828 2970 2964 2956 3002 Big—Bau By Bau 2ABa B
ag  12CCstr 1580 1398 1508 1536 1527 1532 wap(2rcml) 6151 5391 8837 43945
ag v3CH;scis 1286 1227 1227 1234 1192 1234 S 0.006 0.033 0.242 7.258
a, v4CH;twist 977 855 502 883 507 333 S 0.044 0.007 0.020 4.647
by,  vsCHstr 2960 2798 2947 2980 2950 2994 0.049 0.081 0.051 1.514
by, ve CHz scis 1435 1274 1417 1438 1421 1433 S 0.577 0.350 1.813 21.038
bsy v7 CH str 3032 2840 3093 3065 3040 3099 [®ad/0Qp|PslHa.u) 0.2134Q;y) 0.0589 Q) 0.1276 Q) 0.0038 Q)
by vsCCHbend 1205 908 1207 1190 1178 1212 0.1129 Qy,) 0.2619 Qy) 0.0723 Qp)
bs, ve CHywag 860 666 985 1097 999 856 aReferences 29 and 30.
by v10CH str 3059 2841 3065 3088 3090 3114
by  v11CH;wag 813 915 1090 1159 1098 1113 .
b, v.CCHbend 795 655 796 884 799 816 Mmolecule. We have calculated the rates for three cases: dis-

placed, displaceddistorted, and displacedistorted-rotated

* Reference 28. models, taking all 12 modes into the calculations. For the

TABLE 2: Normalized Duschinsky Matrix for the a, Modes displaced model, the geometic averages of the vibrational
of 1By, and Ay in Ethylene frequenciesw! and wj; that is @/!)"% are used. The calcu-
o y A A lated rates of théBlg m 1B leg ~> 1B, and ZAg m 1Bg,
Q 0.7977 01467 00027 0.5780 |n_ternal conversions for the displaced model_ complete_ly agree
Qi 0.0887 ~0.8622 ~0.3802 ~0.3153 with those of refs 28 and 30; h_owever, there is some difference
Q, ~0.1024 0.2951 —0.9156 0.2364 between the rate dBy, »> 1Aq internal conversion calculated
Q, —0.585 —0.3822 0.1259 0.7195 here with that of refs 28 and 30. This difference is because we

used the vibrational frequencies corresponding to each electronic
state in our displaceddistored-rotated model, rather than the

as in the adiabatic case, except that the diabatic, rather thardeOmetric averages, as used in refs 28 and 30.

adiabatic, vibrational frequencies have to be used in the related NOW We consider the azulene molecule. Because of t’he large
equations number of organic molecules known to obey Kasha's rule

(fluorescence is only observed from &nd phosphorescence
from T;), claims of “anomalous” emission from the, S, etc.,
and the B, Ts, etc. electronic states should be viewed with
In this section we shall apply eqs 61, 62, and 48 to calculate suspicion. However, well-documented cases of S $
the internal conversion rate constants for two real molecular fluorescence are found for azulene and its derivatiye¥. This
systems: ethylene and azulene. emission is attributed to the relatively large-$5; energy gap,
The method of steepest descent, also called the saddle poinwhich slows down the normally very rapid rate of 5> S;
method?* has been successfully applied for the approximate internal conversion by decreasing the FranCondon factors.
evaluation of integrals of the type appearing in ec?48The Azulene has 48 vibrational modes that, in the ground
method is based on the observation that the major contribution electronic state, are distributed among the irreducible representa-
from the integrand in integral”  dt exp[f(t)] comes from the  tions (of Cy, point group) as 1& + 6a; + 9b; + 160,. Table

aReferences 29 and 30.

4. Application

vicinity of the pointts (called the saddle point) whef&) is 5 shows the experimental vibrational frequencies cdjlodes
maximum [ '(t) = 0]. We have made use of this method to and the calculated vibrational frequencies df,5nodes in the
evaluate the integral in eq 48. ground $ and excited $electronic states, which are taken into

The ethylene molecule has 12 vibrational modes that, in the account in the calculation of the rate constant of thev6S
ground electronic state, are distributed among the irreducible internal conversion of azulene in the present work. Table 6
representations (0D, point group) as & + 2bgg + by + displays the Duschinsky matrices @f andb, modes between
ay + 2by, + 2byy + bsy (with z-axis along the €C bond). S and S electronic states; notice that tiag modesv, vs, v7
Table 1 shows the complete active space self-consistent fieldremain unrotated from ¢Sto S,. The electronic energy gap,
(CASSCF) calculated vibrational frequencies of the ground Huang-Rhys factors,§ = w!D?/2h, corresponding to the
(*Ag), the excited valenca — z* (1By), and four Rydbergr totally symmetric modea;, and the vibronic coupling constants
— 35(*Bay), @ — 3py(*Big), T — 3pA*Byg), andr — 3px(*Ag) between $ and $ electronic states are shown in Table 7.
state?® There is no vibrational mode mixing upon excitation Finally, Table 8 presents the experimental and the calculated
from the ground to the Rydberg states; however, a heavy mixing rate constants of the;$~ S internal conversion of azulene. It

of four vibrational modes occurs upon excitation to the 7* is worth mentioning that the rate constants are computed by
(*Byw) electronic state. The — a* state hasD,q symmetry, making use oMathematicaprograms*?

and these four modes belong to thgreducible representation The extremely weak S— & fluorescence of azulefe

of the D, point group, a subgroup db,, and D,.28 Table 2 indicates that the competing nonradiative deactivation is most

displays the related normalized Duschinsky matrix for these four effective and essentially represents an internal conversion with
totally symmetric mode#’3° Table 3 contains the electronic  a rate constant dfic =5 x 1011 s71.35 The rate of 3~ T ;
energy gap between the various states, the Haung-Rhys couplingntersystem crossing=<( 6 x 10° s7)*3 is about 5 orders of
constants,§ = wj'DjZ/2h, corresponding to the four totally =~ magnitude smaller than the rate of the corresponding internal
symmetic modes, and the vibronic coupling constants betweenconversion process. Therefore, the internal conversion should
the various singlet electronic states of ethyléh&. Finally, be a more important deactivation channel as compared with the
Table 4 presents the calculated internal conversion decay raténtersystem crossing.

constants for various nonradiative electonic transitions, along Gustav and Storéf have also calculated the rate constant
with the promoting modes that induce these transitions in this for the § » S (as well as for 8~ S; and $ » ) internal
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TABLE 4: Rates of Internal Conversion between Various Singlet Electronic States of Ethylene

ke (T=0) (s} 1Big ™ 1Bay 1Byg ~> 1Bgy 2tAg > 1Bgy 1By 1Ay
displaced 1.0 10(Q,) 2.97x 109(QY) 4.72x 10°(QY) 7.49% 10(Qy)
1.64x 108(Q,)) 4.09% 10(Q)) 1.48x 109(QY)
displaced-distorted 4.65¢ 109(Q.) 3.05x 109(QL) 8.70x 10°(QY) 3.39% 10(QY)
9.23x 10(Q,,) 4.44 % 109(Q,) 7.04% 10°(Q)

displaced-distorted-rotated

TABLE 5: Experimental Vibrational Frequencies (cm™?) of
a; Modes and Calculated Vibrational Frequencies ofb,
Modes in the Ground & and Excited S Electronic States of
Azulene?

mode symmetry S S
a 21 406 384
& V2 679 662
a V3 825 857
& V4 900 900
ag Vs 942 912
a Ve 1058 1062
ar V7 1212 1213
a Vg 1260 1193
ar Vo9 1400 1388
& V10 1443 1447
ay V11 1538 1543
ag V12 1588 1557
bz V13 1621 1627
b, V14 1481 1498
b, Vis 1442 1448
b, V16 1525 1427
bz V17 1400 1349

2 References 36 and 39These two modes were represented by Page
and co-worker® by one effective mode of frequency at 1562 ¢m

TABLE 6: Normalized Duschinsky Matrices for the a; and
b, Modes of § and S, Electronic States of Azulene
a; Modeg®
Q2 Q3 Qi Q3 Qs Qs Qo Qit Qi2
Q, 0.995 —0.085

, 0.081 0.992 —0.058
A 0.992 —0.110
5 0.057 0.107 0.991
Q5 0.987 0.109 0.053 0.053 0.072
Q —0.099 0.942-0.298 0.093 0.071
Qo —0.101 0.236 0.909 0.297 0.135
Q, —0.061 —0.126 0.742—0.653
Q, 0.051 —0.197 —0.254 0.598 0.737
b, Modesd
Qi3 Qi Qis Qi Q17
Qi3 0.72 —0.53 -0.38 -0.22 0.22
QL 0.67 ~0.63 0.45
Qs 0.52 0.49 0.72 0.41
Qs 0.34 —0.25 —0.22 0.48 —0.6
Q, -0.2 -0.39

aReference 362 Only off-diagonal elements larger than 0.05 are
listed. ¢ Reference 39 Only off-diagonal elements larger than 0.2 are
listed.

conversion of azulene, considering only three (nontotally
symmetric) promoting and three (totally symmetric) accepting
vibrational modes of azulene in a displaced-oscillator model,
and obtainedkc(S, ~ &) = 1.2 x 109 s71. However, the

present calculations show that more vibrational modes are
involved in the process, and it obtains results (Table 8) that are

very close (especially from the displacedistorted model) to
the experimental value. Also, it is notable that the distortions

1.81x 107(Q))
3.67x 10°(Q)

TABLE 7: Energy Gap, Haung-Rhys Factors, and Vibronic
Coupling Constants for the §S—S; in Azulene

wap (2 T Y)2 14260
b 0.146

0?
0.214
0.527
Sio 0?
S° 0.588

LPLLPPLYH YL
o
N

(@] 9/9Qb| Ppia.u.} 4.905Q,0)
3.961Q),)

aReference 37° References 36 and 38This is the combined
displacement for the 1557 and 1543 @nmodes.

TABLE 8: Rate of the Sy S Internal Conversion of
Azulene

ke (T=0)(s™) S S
experimental 5« 101
>10'
displaced 3.3% 10t
displaced-distorted 5.15¢ 10"

displaced-distorted, only promoting modes rotated 10Qa0
displaced-distorted, only accepting modes rotated 3104
displaced-distorted-rotated 6.81x 10%

aReference 352 Reference 40.

5. Summary

We have derived general expressions for calculating the
internal conversion decay rate constants between two adiabatic
electronic states (eqs 652) and between two diabatic elec-
tronic states (egs 689). The expressions include the displace-
ments, distortions, and rotations of PESs, as well as the
temperature. Our expression for the internal conversion between
two adiabatic electronic states may be considered as a gener-
alization of that derived in ref 30, because the restrictions on
the number of promoting modes and the temperature have been
relaxed in the present work; besides, making use of matrix
algebra has led to more manageable expressions for the
computational purposes.

For illustration, the internal conversion rate constants between
the various singlet electronic states of ethylene and between S
and $ electronic states of azulene have been calculated.

Appendix
Consider the following integral (Al);

I'= [ dxxx exp(-x"px + 2x'q) (A1)

of vibrational modes cause an increase, whereas the rotations

cause a decrease, in the internal conversion rate constant anevhere & = l'IJ-N:l dx;, x andq areN-dimensional vectors, and
that the promoting modes are more effective in decreasing thep is aN x N symmetric matrix. By the linear transformatign
rate than the accepting modes. = X — p~lqg the integral can be written as eq A2.
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_ T.—1 b -1 -1 (6) Lin, S. H.; Bersohn, RJ. Chem. Phys1968 48, 2732.
I =exp@'p ) [ dy(y +p )y +p ‘q) (7) (@) Bixon, M.; Jortner, 3. Chem. PhysL968 48, 715. (b) Bixon,
T M.; Jortner, JJ. Chem. Physl969 50, 3284. (c) Bixon, M.; Jortner, J.
expt-y py) (A2) Chem. Phys1969 50, 4061.

(8) Medvedev, E. S.; Osherov, V. Radiationless Transitions in
By the unitary transformatioy = 6u, where@ is chosen to Polyatomic MoleculgsSpringer-Verlag: New York, 1995.

; ; NATRA — 7 (9) Heller, E.Acc. Chem. Red981, 14, 368.
yield the diagonal matri€:0'p6 = 4, it becomes eq A3. (10) Sando, G. M.; Spears, K. G. Phys. ChemA 2001, 105 5326.

(11) Kotelnikov, A. |.; Medvedev, E. S.; Medvedev, D. M.; Stuche-
I S “ 4 N P N - bru(kh())v, AHA.J. Phys.dChem. R001, 105,5I789. )
= ex X u U U 12) Cohen-Tannoudji, C.; Diu, B.; Lalpd-. Quantum Mechanics
Pae ) < [, [JZ RAG q)k][; i Wiley: New York, 1977
1 T (13) (a) Islampour, R.; Kasha, MChem. Phys.1983 74, 67. (b)
(p "0)] exp(—u iu) (A3) Islampour, R.; Kasha, MChem. Phys1983 75, 157.
(14) Born, M.; Oppenheimer, RAnn. Phys 1927 84, 457.
Notice that de® = 1. Integrals over the odd integrands vanish Un(i\%eSZSi?; ?r’e!é’: Hﬁg&g\’(};ﬁg’q%?ga' Theory of Crystal Lattice®xford
and we obtain eq A4. (16) Duschinsky, FActa Phisicochim. URS$937, 7, 551.
(17) Kubo, R.Phys. Re. 1952 86, 929.
N (18) Kubo, R.; Toyozawa, YProg. Theor. Phys1955 13, 160.
— T,-1 0 2 -1 -1 19) Islampour, R.; Dehestani, M.; Lin, S. Bl. Mol. Spectrosc199
I =exp@'p ) [, du{Zﬁkﬂuuj + (P ) o) 108 T mP P s
(20) Islampour, R.; Dehestani, M.; Lin, S. Mlol. Phys.200Q 98, 101.
N kﬂu (21) Mukamel, SPrinciples of Nonlinear Optical Spectroscqyxford
- ) = - University Press: New York, 1995.
eXp( Z;L' ) eXp(q c q) Z + (22) Di Bartolo, B. InRadiationless Processe3i Bartolo, B., Goldberg,
= V., Eds.; Plenum Press: New York, 1980.
nN 172 (23) Koppel, H.; Domcke, W. InEncyclopedia of Computational
(p*lq)k(pflq)l - (A4) Chemistry von RagugP., Schleyev, Eds.; Wiley: New York, 1998; Vol.
1-5.
SRR (24) Cushing, J. T.Applied Analytical Mathematics for Physical
Scientists Wiley: New York, 1975.

Finally, we get eq A5. (25) Fischer, F.; Schneider, 8hem. Phys. Lettl971, 10, 392.
(26) Peluso, A.; Santoro, F.; Del Re, (&t. J. Quantum Chenl997,
63, 233.
— T—1 (27) Borrelli, R.; Peluso, AJ. Chem. Phys2003 119, 8437.
I= [ piCl )k' +r q)k(p q)](detp) exp@p a) (A5) (28) (a) Mebel, A. M.; Chen, Y.-T.; Lin, S. HChem. Phys. Letfl996

258 53. (b)J. Chem. Pis. 1996 105, 9007.

(29) Mebel, A. M.; Hayashi, M.; Lin, S. HTrends Phg. Chem.1997,
6, 315.

(30) Hayashi, M.; Mebel, A. M.; Liang, K. K.; Lin, S. Hl. Chem. Phy.

Accordingly, we get eqs A67.

T N |2 1998 108 2044. o
f dxx, exp(=x px+ g =P q)k det (31) Beer, M.; Longuet-Higgins, H. Q. Chem. Phys1955 23, 1390.
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